Mahalakshmi Engineering College

Electronics and Communication Engineering

Mahalakshmi Engineering College

 

DEPARTMENT PROFILE

Electronics engineering, or electronic engineering, is an engineering discipline where non-linear and active electrical components such as electron tubes, and semiconductor devices, especially transistors, diodes and integrated circuits, are utilized to design electronic circuits, devices and systems, typically also including passive electrical components and based on printed circuit boards. The term denotes a broad engineering field that covers important subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. Electronics engineering deals with implementation of applications, principles and algorithms developed within many related fields, for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others.

Electronics is a subfield within the wider electrical engineering academic subject. An academic degree with a major in electronics engineering can be acquired from some universities, while other universities use electrical engineering as the subject. The term electrical engineer is still used in the academic world to include electronic engineers. However, some people consider the term 'electrical engineer' should be reserved for those having specialized in power and heavy current or high voltage engineering, while others consider that power is just one subset of electrical engineering and (and indeed the term 'power engineering' is used in that industry) as well as 'electrical distribution engineering'. Again, in recent years there has been a growth of new separate-entry degree courses such as 'information engineering', 'systems engineering' and 'communication systems engineering', often followed by academic departments of similar name, which are typically not considered as subfields of electronics engineering but of electrical engineering.

In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit.In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing.Integrated circuits and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.

Vision

  • In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit.In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing.Integrated circuits and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.

  • To consistently encourage research interest among the faculty and students and to promote the Electronics and Communication Engineering department as a centre of research excellence.

MISSION

  • To impart sound technical competency to students and subsequently enhance their employability quotient in core domains.

  • To provide opportunities for faculty to continue their research by state of art infrastructure and laboratory facilities.

  • To invite relevant industries to collaborate with the institution to get a first hand idea of real time problems.

  • To conduct periodical technical workshops / training programs for the benefit of the student community.


Mahalakshmi Engineering College
Back to top